If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-18p+20=-8
We move all terms to the left:
2p^2-18p+20-(-8)=0
We add all the numbers together, and all the variables
2p^2-18p+28=0
a = 2; b = -18; c = +28;
Δ = b2-4ac
Δ = -182-4·2·28
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-10}{2*2}=\frac{8}{4} =2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+10}{2*2}=\frac{28}{4} =7 $
| 57=3(z-49) | | 5(x)-4/2=22.5 | | -v^2+6v-7=2 | | 57=3(z−49) | | 5/6+3j=-2/6 | | 3(n-65)=72 | | 10r^2-7r=0 | | -9-2v=-39 | | 3(n−65)=72 | | x+73=-6x-4 | | 4/x+3/5=8 | | 14/34=x/51= | | 4x+35=8 | | 50b+225=175 | | 7x-3x=7x+3x-24 | | 10+2x-4=2x+1+x | | t/4−1=3 | | 5x+3x=(4x-5)-2 | | 9/9(x+5)=21 | | 7^x/3=12 | | -4(3/2x+-1/2)=-15 | | p-72/3=8 | | 3b−8=1 | | 25(x-3=175)=4 | | T+10+t+20+t=180 | | 25(x15)=4 | | 5−2q=1 | | 5w-5=10 | | 6t-1=0 | | 6t+1=0 | | p−72/3=8 | | 3x^2+18x-216=0 |